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Different ideas for reducing the number of particles in the stochastic weighted
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1. INTRODUCTION

In this paper we continue the development and analysis of the stochastic weighted parti-
cle method (SWPM) for kinetic equations. This method was introduced in [16], where we
presented numerical results for the one-dimensional heat exchange problem. The conver-
gence of the method was investigated in [14], where we were also able to show a drastic
reduction of the stochastic fluctuations using the SWPM for one model kinetic equation.
In [15] we presented a detailed study of different effects of the numerical solution of this
equation. The computation of the macroscopic quantities in the regions with low particle
density was of special interest. We refer to [9, 8] to complete the list of references for the
SWPM.
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The main object of our interest is the spatially inhomogeneous nonlinear Boltzmann
equation for dilute monoatomic gases [4]

∂ f

∂t
(t, x, v) + (v, gradx f (t, x, v))

=
∫
R3

∫
S2

B(v, w, e)[ f (t, x, v′) f (t, x, w′) − f (t, x, v) f (t, x, w)] de dw, (1.1)

f (0, x, v) = f0(x, v), (1.2)

wheret ≥ 0 is the time variable,x ∈ Ä ⊂ R3 is the space variable, andv ∈R3 is the velocity
variable. The vectore is from the unit sphereS2. The functionB(v, w, e), the so-called
collision kernel, has the form for the “hard spheres” model

B(v, w, e) = 1

2
√

2πκ
|(v − w, e)|, (1.3)

whereκ denotes the Knudsen number. The postcollision velocitiesv′ andw′ are defined by

v′ = v − (v − w, e) e, w′ = w + (v − w, e) e. (1.4)

The main difference between the SWPM and other particle schemes for the Boltzmann
equation [2, 12, 11] is the idea of a random weight transfer between particles during col-
lisions. The distribution functionf (t, x, v) in the low density regions of the flow can then
be resolved more accurately by producing many particles of low weight. This procedure
usually leads to an increase in the number of particles in the system. If this increase cannot
be compensated in some natural way, for example, if the new small particles cannot leave
the computational domain (as in the heat exchange problem), then it becomes imperative
to reduce the number of particles. The problem of reducing the number of particles has
already been discussed in [10, 19, 16].

In the present paper we give a systematic study of the theoretical and numerical aspects
of reducing the number of particles including the theoretical estimates for the error in the
bounded Lipschitz metric, as well as in the Sobolev spaceH−2. Furthermore, we discuss a
possible choice of the reduction parameters in both a random and a deterministic way. In
the numerical tests we concentrate on the influence of the reduction on statistical values
such as empirical mean and confidence intervals. It is shown that an appropriate reduction
procedure has little effect on the accuracy of the numerical scheme.

The paper is organized as follows. A brief description of the SWPM is given in Section 2.
In Section 3, the main part of the paper, we discuss different approaches to the reduction
of the number of particles. The results of our numerical tests are presented in Section 4.
Finally, we draw some concluding remarks.

2. DESCRIPTION OF THE SWPM

The main idea of all particle methods for the Boltzmann equation (1.1), (1.2) is an
approximation of the sequence of measures

f (tk, x, v) dx dv, tk = k1t, k = 0, 1, . . . , 1t > 0,
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by a system of point measures

µ(tk, dx, dv) =
n(tk)∑
j =1

gj (tk)δ(xj (tk),v j (tk))(dx, dv), k = 0, 1, . . . , (2.1)

defined by the families of particles

(gj (tk), xj (tk), v j (tk))
n(tk)
j =1 , k = 0, 1, . . . . (2.2)

The behaviour of the system (2.2) can be briefly described as follows. The first step
(k = 0) is an approximation of the initial measure

f0(x, v) dx dv

by a system of particles (2.2) fort0 = 0. Usually, one uses constant weights

gj (0) = g, j = 1, . . . , n(0).

Then the particles move according to their velocities, i.e.

xj (t) = xj (tk) + (t − tk)v j (tk), t ∈ [tk, tk+1].

If a particle crosses the “outflow boundary” during this step then this particle will be
removed from the further simulation. The velocity of a particle changes according to the
boundary condition if this particle hits the “boundary of the body”; the particle continues
the movement with a new velocity for the rest of the time interval. The weights of particles
remain the same during this “free flow step.” Through the “inflow boundary” new particles
of standard weight come into the computational domain.

The “collision step” can be described as follows. First, all particles are sorted in the
spatial cellsÄ`, `= 1, . . . , `c. These cells define a nonoverlapping decomposition of the
computational domain

Ä =
`c⋃

`=1

Ä`.

In each cellÄ`, `= 1, . . . , `c, collisions ofn`(tk) particles are simulated. This is the most
crucial part of the whole procedure. Here we also have the main difference between the
SWPM and other particle methods which use constant weights. The collision simulation
step in one spatial cellÄ`, `= 1, . . . , `c, corresponds to the mollified equation [4]

∂ f

∂t
(t, x, v) =

∫
Ä

∫
R3

∫
S2

h`(x, y)B(v, w, e)[ f (t, x, v′) f (t, y, w′)

− f (t, x, v) f (t, y, w)] de dw dy, (2.3)

where

h`(x, y) = 1

|Ä`|¶Ä`
(x)¶Ä`

(y), (2.4)
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is a spatial mollifier,|Ä`| denotes the volume of the cellÄ`, and¶Ä`
(x) is the indicator

function of the setÄ`.
The stochastic process of the collisions is

Z(t) = {(gj (t), xj (t), v j (t)), j = 1, . . . , n}, t ≥ tk. (2.5)

Here we now use the local numbering of particles in the cellÄ` and notaten = n`(tk). The
infinitesimal generator of the process (2.5) is given by

A(8)(z) =
∑

1≤i 6= j ≤n

∫
S2

1

2
q(z, i, j, e)(8(J(z, i, j, e)) − 8(z)) de, (2.6)

where8 is a measurable function of the argument

z = ((g1, x1, v1), . . . , (gn, xn, vn)) (2.7)

and

(J(z, i, j, e))k =



(gk, xk, vk), if k ≤ n, k 6= i, j,
(gi − G(z, i, j, e), xi , vi )), if k = i,
(gj − G(z, i, j, e), xj , v j ), if k = j,
(G(z, i, j, e), xi , v

′
i ), if k = n + 1,

(G(z, i, j, e), xj , v
′
j ), if k = n + 2,

(2.8)

wherev′
i , v

′
j are defined as in (1.4). The functionG(z, i, j, e) is called “weight transfer

function.” This function, the intensity kernelq(z, i, j, e) of the generator (2.6) and the col-
lision kernel of the Boltzmann equation (2.3), (2.4) are connected via the basic relationship

q(z, i, j, e)G(z, i, j, e) = h`(xi , xj )B(vi , v j , e)gi gj (2.9)

which has been proved [15] to be sufficient for the convergence of the method.
The behaviour of the process (2.5) is as follows. The waiting time ˆτ(z) between process

jumps can be defined either as a random variable with the distribution

Prob{τ̂ (z) ≥ t} = exp(−π̂(z)t),

where

π̂(z) = 1

2

∑
1≤i 6= j ≤n

q̂max(z, i, j ) (2.10)

and ∫
S2

q(z, i, j, e) de≤ q̂max(z, i, j ), (2.11)

or as a deterministic object by

τ̂ (z) = π̂(z)−1. (2.12)
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Then the collision partners (i.e., the indicesi and j ) must be chosen. The distribution of the
parametersi and j is determined by the probabilities

q̂max(z, i, j )∑
1≤i 6= j ≤n q̂max(z, i, j )

. (2.13)

For giveni and j , the jump is fictitious with probability (cf. (2.11))

1 −
∫

S2 q(z, i, j, e) de

q̂max(z, i, j )
. (2.14)

Otherwise, the process (2.5) jumps to a new statez̃= J(z, i, j, e) as described in (2.8). The
distribution of the parametere is

q(z, i, j, e)∫
S2 q(z, i, j, e) de

. (2.15)

There is a degree of freedom in our method, namely an appropriate choice of the weight
transfer functionG. This function should always fulfil the condition

G(z, i, j, e) ≤ min(gi , gj )

in order to avoid negative weights in (2.8). We consider the functionG in the form

G(z, i, j, e) = min(gi , gj )

1 + γ (z, i, j, e)
, (2.16)

whereγ (z, i, j, e) ≥ 0 is a parameter of our method which can be chosen arbitrarily, de-
pending on our interest. The parameterγ can vary in different regions of the flow (cellÄ`)
for different collision partnersi and j or even as a function of the unit vectore. The jump
intensity functionq is then defined from the basic relationship (2.9) as

q(z, i, j, e) = (1 + γ (z, i, j, e)) max(gi , gj )h`(xi , xj )B(vi , v j , e). (2.17)

According to (2.11), we need a majorant for the function (2.17). Note that the function
(2.4) is now just a constant, i.e.

h`(xi , xj ) = 1

|Ä`| ,

because we have assumed that all particles are sorted in cells. Furthermore, we use the
majorants

1 + γ (z, i, j, e) ≤ 1 + Cγ,max, (2.18)∫
S2

B(vi , v j , e) de≤ CB,max,

(2.19)
max(gi , gj ) ≤ gi + gj − gmin(z),

where (cf. (2.7))

gmin(z) = min
1≤i ≤n

gi , (2.20)
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to obtain

q̂max(z, i, j ) = (1 + Cγ,max) CB,max
1

|Ä`| [gi + gj − gmin(z)]. (2.21)

Now we are able to compute the waiting time parameter via (2.10)

π̂(z) = 1

2
(1 + Cγ,max)CB,max

1

|Ä`| (n − 1)[2gsum(z) − ngmin(z)], (2.22)

where (cf. (2.7))

gsum(z) =
n∑

i =1

gi , (2.23)

as well as all other parameters of our process. The probability of the parametersi and j is
determined via (2.13) (cf. (2.21), (2.10), (2.22))

gi + gj − gmin(z)

(n − 1)[2gsum(z) − ngmin(z)]
. (2.24)

The parameteri is then to be chosen according to the probability

(n − 2)gi + gsum(z) − (n − 1)gmin(z)

(n − 1)[2gsum(z) − ngmin(z)]
. (2.25)

Given i , the parameterj is chosen according to the probability

gi + gj − gmin(z)

(n − 2)gi + gsum(z) − (n − 1)gmin(z)
. (2.26)

Given i and j , the jump is fictitious with probability (2.14) (cf. (2.17), (2.21))

1 −
∫

S2(1 + γ (z, i, j, e))B(vi , v j , e) de

(1 + Cγ,max) CB,max

max(gi , gj )

gi + gj − gmin(z)
; (2.27)

otherwise the distribution of the parametere is (2.15) (cf. (2.17))

(1 + γ (z, i, j, e))B(vi , v j , e)∫
S2(1 + γ (z, i, j, e))B(vi , v j , e) de

(2.28)

and the new state is̃z= J(z, i, j, e) as defined in (2.8).
Now we shall consider some special cases. For the Boltzmann equation (1.1) with the

collision kernel (1.3) we obtain for the constantCB,max (cf. (2.19))∫
S2

B(vi , v j , e) de= 1

2
√

2πκ

∫
S2

|(vi − v j , e)| de= |vi − v j |
2
√

2πκ

∫ 2π

0

∫ π

0
| cosθ | sinθ dθ dϕ

= |vi − v j |√
2κ

≤ U`√
2κ

= CB,max, (2.29)

whereU` denotes the maximum relative velocity in the cellÄ`.



            

388 RJASANOW, SCHREIBER, AND WAGNER

Consider thespecial case

gi = const= g, γ = 0.

From (2.16) we obtain

G(z, i, j, e) = g. (2.30)

We then have (cf. (2.20), (2.23))

gmin(z) = g, gsum(z) = ng, (2.31)

and the waiting time parameter can be computed according to (2.22), (2.18), (2.29), (2.31)
as

π̂(z) = 1

2
√

2κ

U`

|Ä`|gn(n − 1).

The deterministic time counter (2.12) is then nothing other than Bird’s well-known “no
time counter”

τ̂ (z) = π̂(z)−1 = 2
√

2κ|Ä`|
gn(n − 1)U`

.

The parametersi and j are distributed uniformly (cf. (2.24)). The jump is fictitious with
probability (cf. (2.27), (2.29))

1 − |vi − v j |
U`

.

The vectore is distributed on the surface of the unit sphereS2 according to (2.28), i.e.

B(vi , v j , e)∫
S2 B(vi , v j , e) de

. (2.32)

There is no increase in the number of particles in the system. The particles fork = i and
k = j in (2.8) have zero weights according to (2.30) and should therefore be removed from
the system.

Consider thesecond special casewhere the weights of particles are different but the
parameterγ is still considered to be zero,

gi − arbitrary, γ = 0.

From (2.16) we obtain

G(z, i, j, e) = min(gi , gj ) (2.33)

and from (2.22), (2.29)

τ̂ (z) = π̂(z)−1 = 2
√

2κ|Ä`|
(n − 1)[2gsum(z) − ngmin(z)]U`
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for the deterministic time counter (2.12). The parametersi and j are distributed according
to (2.24). The jump is fictitious with probability (cf. (2.27), (2.29))

1 − |vi − v j |
U`

max(gi , gj )

gi + gj − gmin(z)
.

The vectore is distributed according to (2.32).
The number of particles increases by one in each collision with unequal weights, accord-

ing to (2.8) and (2.33). If all initial particles and all inflow particles have the same weight
then this case is identical to the previous one. Here we would like to point out that our
SWPM is a generalization of Bird’s DSMC method.

In the third special casewe choose the constantγ unequal zero in one cellÄ` during
the fixed time interval [tk, tk+1], i.e. γ is independent ofi, j , ande,

gi − arbitrary, γ = const> 0.

From (2.16) we obtain

G(z, i, j, e) = min(gi , gj )

1 + γ
,

and from (2.22), (2.29)

τ̂ (z) = π̂(z)−1 = 1

1 + γ

2
√

2κ|Ä`|
(n − 1)[2gsum(z) − ngmin(z)]U`

for the deterministic time counter. All other parameters of the process remain the same.
In this case the number of particles increases by two in each collision. This procedure

can be used efficiently for reducing stochastic fluctuations arising in computation of the
macroscopic quantities in low particle density regions, as we showed in [14].

But the new small particles move and will probably reach the region where the particle
density is normal. There it is necessary to use the second special case (2.33) for the collisions,
which means the number of particles will increase further without any advantage being
gained. The best situation is, of course, if the particles disappear through the “outflow
boundary” of the computational domain at a rate corresponding to the “production rate”
there. In such a situation we will still be dealing with an asymptotically constant number of
particles, but with more small particles in the low density regions (this is our improvement)
which are on the way to the “outflow boundary” (this is the price).

There are certainly many situations when the number of particles should be reduced
during the calculations. For example, if we solve a problem in a closed computational
domain then we have no chance for outflow. How should reduction be organized? How
large is the additional error due to the reduction procedure? How much additional work will
be required? We will try to answer these questions in the next section.

3. REDUCTION OF THE NUMBER OF PARTICLES

Suppose the system of particles is given

(gi , xi , vi ), i = 1, . . . , n, (3.1)
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where the number of particlesn is too large and should be reduced. Thus the objective is to
construct a new system

(g̃i , x̃i , ṽi ), i = 1, . . . , ñ, ñ < n, (3.2)

having far fewer particles but such that the corresponding empirical measures still approx-
imate the solution of the Boltzmann equation.

In fact, there are two problems. The first one is dividing the system (3.1) into a number
n̂ of groups or clusters

(gi, j , xi, j , vi, j ), i = 1, . . . , n̂, j = 1, . . . , ni , (3.3)

with

n̂∑
i =1

ni = n.

We will deal with this problem in Subsection 3.4.
The second problem is replacing each cluster havingni ≥ 3 by few particles and in the

simplest case by two particles

(g̃i,1, x̃i,1, ṽi,1), (g̃i,2, x̃i,2, ṽi,2), i : ni ≥ 3. (3.4)

The new number of particles after reduction becomes

ñ ≤ 2n̂.

There are two things we have to consider in reduction: the conservation of the macroscopic
quantities and control over the additional error.

Let us introduce the following notations for a clusteri having more than three particles:

g(i ) =
ni∑

j =1

gi, j , (3.5)

for the mass of the cluster;

g(i )V (i ) =
ni∑

j =1

gi, j vi, j , (3.6)

for the momentum of the cluster;

g(i )M (i ) =
ni∑

j =1

gi, j vi, j v
T
i, j , (3.7)

for the flow of the momentum of the cluster;

g(i )E(i ) = g(i )trM (i ) =
ni∑

j =1

gi, j ‖vi, j ‖2, (3.8)
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ε(i ) =
√

E(i ) − ∥∥V (i )
∥∥2

, (3.9)

q(i ) = 1

2

ni∑
j =1

gi, j
(
vi, j − V (i )

)∥∥vi, j − V (i )
∥∥2

, (3.10)

for the heat flux vector of the cluster.
We can easily see that if we conserve only those quantitiesg(i ), g(i )V (i ), andE(i ) which
correspond to the conservation laws of the Boltzmann equation, then the simplest choice of
the pair (3.4) is

g̃i,1 = g̃i,2 = g(i )
/

2, (3.11)

ṽi,1 = V (i ) + ε(i )e, ṽi,2 = V (i ) − ε(i )e, e ∈ S2. (3.12)

The positions of new particles (3.4)x̃i,1, x̃i,2 can be randomly chosen from the old set of
positions

Xi = {xi, j , j = 1, . . . , ni }. (3.13)

Note that we do not use all degrees of freedom now; i.e., we choose two new particles
of equal weight and randomly choose a vectore on the unit sphere. Here we have three
additional degrees of freedom which can be used in different ways. In [19] the author
requires the conservation of all main diagonal components of the flow of momentum (3.7)
instead of the trace. By doing so the vectorecan be defined (except for the sign of the single
components) as

ek = ± 1

ε(i )

√
M (i )

kk − [
V (i )

k

]2
, k = 1, 2, 3. (3.14)

The weights of the particles remain equal.

3.1. Conservation of the Heat Flux

In the following we show how to choose the pair of particles (3.4) using all possible
degrees of freedom in order to conserve, not only invariants of the collision integral, but
also the heat flux vector as defined in (3.10).

Let us choose the velocities of the particles (3.4) in the form

ṽi,1 = V (i ) + αe, ṽi,2 = V (i ) − βe, e ∈ S2, (3.15)

whereα andβ are positive numbers. From (3.5)–(3.10) we obtain

g̃i,1 + g̃i,2 = g(i ), (3.16)

g̃i,1α − g̃i,2β = 0, (3.17)

g̃i,1α
2 + g̃i,2β

2 = g(i )
(
ε(i )

)2
, (3.18)(

g̃i,1α
3 + g̃i,2β

3
)
e = 2q(i ). (3.19)

From (3.19) it is clear that ifq(i ) 6= 0 then vectore should be chosen as

e = q(i )
/∥∥q(i )

∥∥.
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If q(i ) = 0 then vectore can be chosen randomly on the surface of the unit sphereS2 or
corresponding to (3.14).

We now solve the system (3.16)–(3.19) using the notation

α = θε(i ), θ ≥ 1. (3.20)

From (3.17) we first obtain

β = g̃i,1

g̃i,2
α. (3.21)

Then using (3.18), (3.21), and (3.20) we get

g̃i,1α
2 + g̃i,2β

2 = g̃i,1α
2 + g̃i,2

g̃2
i,1

g̃2
i,2

α2 = g̃i,1θ
2
(
ε(i )

)2 + g̃2
i,1

g̃i,2
θ2

(
ε(i )

)2

= g̃i,1

g̃i,2
θ2

(
ε(i )

)2
(g̃i,1 + g̃i,2) = g(i )

(
ε(i )

)2 g̃i,1

g̃i,2
θ2 = g(i )

(
ε(i )

)2
. (3.22)

Thus, (3.22), (3.16), and (3.21) yield

g̃i,1 = g(i ) 1

1 + θ2
, g̃i,2 = g(i ) θ2

1 + θ2
, (3.23)

β = ε(i )

θ
. (3.24)

All unknowns are now represented byθ . If we put (3.20), (3.23), and (3.24) in (3.19)
then we obtain the final equation forθ ,

g̃i,1α
3 − g̃i,2β

3 = g(i ) 1

1 + θ2
θ3

(
ε(i )

)3 − g(i ) θ2

1 + θ2

(
ε(i )

)3

θ3
= g(i )

(
ε(i )

)3

1 + θ2

(
θ3 − 1

θ

)

= g(i )

(
ε(i )

)3

θ
(θ2 − 1) = 2

∥∥q(i )
∥∥,

or

θ2 − 2

∥∥q(i )
∥∥

g(i )
(
ε(i )

)3θ − 1 = 0. (3.25)

The equation (3.25) is always solvable and only one of its solutions, namely

θ(i ) =
∥∥q(i )

∥∥
g(i )

(
ε(i )

)3 +
√√√√1 +

∥∥q(i )
∥∥2(

g(i )
)2(

ε(i )
)6 (3.26)

fulfils the condition (3.20).
Note that ifq(i ) = 0 we will automatically obtain the simplest solution (3.11), (3.12).
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3.2. Lipschitz Metric

In this subsection we give a brief summary of the results published in [16]. We consider the
bounded Lipschitz metric as a distance between two measuresν1(dx, dv) andν2(dx, dv)

defined as

%(ν1, ν2) = sup
‖ϕ‖L≤1

∣∣∣∣ ∫
Ä×R3

ϕ(x, v)ν1(dx, dv) −
∫

Ä×R3
ϕ(x, v)ν2(dx, dv)

∣∣∣∣, (3.27)

where

‖ϕ‖L = max

(
sup
(x,v)

|ϕ(x, v)|, sup
(x,v) 6=(y,w)

|ϕ(x, v) − ϕ(y, w)|
‖x − y‖ + ‖v − w‖

)
.

The main result is the following lemma.

LEMMA 1. Let (3.3) be a given system of particles in a cluster and the particles

(g̃i,1, x̃i,1, ṽi,1), (g̃i,2, x̃i,2, ṽi,2)

be chosen according to(3.11), (3.12). Then for the bounded Lipschitz metric(3.27) between
the measures

µ(i ) =
ni∑

j =1

gi, j δ(xi, j ,vi, j ) (3.28)

and

µ̃(i ) = g(i )

2
(δ(x̃i,1,ṽi,1) + δ(x̃i,2,ṽi,2)) (3.29)

the estimate

%
(
µ(i ), µ̃(i )

) ≤ 2g(i )
(
ε(i ) + diam(Xi )

)
is valid, whereε(i ) and Xi are defined in(3.9) and(3.13), respectively.

Using the triangle inequality we obtain the corresponding result for the whole systems
(3.1) and (3.2):

%(µ, µ̃) ≤ 2
n̂∑

i =1

g(i )
(
ε(i ) + diam(Xi )

)
. (3.30)

On the other hand, with a similar technique for the reduction procedure (3.15), (3.20),
(3.23), (3.24), (3.26) we obtain an estimate

%(µ, µ̃) ≤
n̂∑

i =1

g(i )

([
1 + θ(i )

1 + (
θ(i )

)2

]
ε(i ) + 2 diam(Xi )

)
, (3.31)

which is slightly better than the previous one.
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Note that the dependence of the particles (3.4) on the choice of the unit vectore is lost in
both estimates (3.30) and (3.31). This means that for the reduction technique corresponding
to (3.14) the estimate (3.30) holds too. We would like to neglect the error relating to the
influence of the space distribution, because we assume that the value diam(Xi ) is small
enough already. On the other hand, the estimates (3.30), (3.31) show us the possibility of
clustering the particles. The clusters have to be chosen so that the product of the mass of the
clusterg(i ) with its “temperature”ε(i ) is small. The corresponding discussion can be found
in Subsection 3.4.

3.3. Sobolev Norm

In this subsection we use a different distance between the measures (3.28), (3.29) which
is the norm in the Sobolev spaceH−2. The equivalence of the weak∗ convergence of the
measures and of the convergence in the Sobolev normsHs, s< −d/2, whered denotes the
space dimension (d = 3 in our case), was proved in [20].

Let us first introduce some notations which are needed. Ifµ(dv) is a measure then the
complex-valued function

µ̂(ξ) =
∫
R3

exp(ı(ξ, v))µ(dv)

is called the Fourier transformation of the measureµ(dv). The Sobolev norm of this measure
is then defined by

‖µ‖2
s =

∫
R3

(1 + |ξ |2)s |µ̂(ξ)|2 dξ.

In this subsection we neglect the error due to the spatial distribution of the particles and
compute only the Sobolev norm of the difference between the measuresµ andµ̃ (cf. (3.28),
(3.29)) defined by the systems of the particles

((g1, v1), . . . , (gn, vn)), ((g/2, V + εe), (g/2, V − εe)),

whereg, V , andε are defined corresponding to (3.5)–(3.8). We do not use the cluster index
i in this subsection so we do not overload the formulae, bearing in mind that all the things
we consider here will have to be summed up later for all clusters.

LEMMA 2. The Sobolev norm of the difference of the measuresµ andµ̃ inH−2 is given
by

‖µ − µ̃‖2
−2 = 1

8

(
(1 + exp(−2ε))g2 + 2

n∑
k,l=1

gkgl exp(−|vk − vl |)

− 2g
n∑

k=1

gk[exp(−|vk − V − εe|) + exp(−|vk − V + εe|)]
)

. (3.32)

Proof. We begin the proof by computing the Fourier transformation of the measuresµ

andµ̃:

µ̂(ξ) =
∫
R3

exp(ı(ξ, v))µ(dv) =
n∑

j =1

gj exp(ı(ξ, v j )),
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ˆ̃µ(ξ) =
∫
R3

exp(ı(ξ, v))µ̃(dv) = g

2
exp(ı(ξ, V − εe)) + g

2
exp(ı(ξ, V + εe))

=
n∑

j =1

gj

(
1

2
exp(ı(ξ, V − εe)) + 1

2
exp(ı(ξ, V + εe))

)
.

Thus, we obtain

|µ̂ − ˆ̃µ| =
n∑

k,l=1

gkgl

(
cos(ξ, vk − vl ) − 1

2
cos(ξ, vk − V − εe) − 1

2
cos(ξ, vk − V + εe)

− 1

2
cos(ξ, vl − V + εe) − 1

2
cos(ξ, vl − V + εe) + 1

2
+ 1

2
cos(ξ, 2εe)

)
.

(3.33)

Therefore it is necessary to compute the integral∫
R3

cos(ξ, u)

(1 + |ξ |2)2
dξ

for variousu involved in (3.33). We use the spherical coordinates (%, ϕ, θ) whereby the
z–axis has the same direction asu. Using(ξ, u) = |ξ | |u| cosθ = %α(θ) we obtain∫
R3

cos(ξ, u)

(1 + |ξ |2)2
dξ = 2

∫ 2π

0
dϕ

∫ π/2

0
sinθ dθ

∫ ∞

0

%2 cos(%α(θ))

(1 + %2)2
d%

= 4π

∫ π/2

0
sinθ dθ

1

2
Re

∫
D

z2 exp(ıα(θ)z)

(1 + z2)2
dz

= 4π

∫ π/2

0
π ı Res

[
z2 exp(ıα(θ)z)

(1 + z2)2
, ı

]
sinθ dθ

= 4π

∫ π/2

0

π

4
(1 − α(θ)) exp(−α(θ)) sinθ dθ

= π2
∫ π/2

0
(1 − |u| cosθ) exp(−|u| cosθ) sinθ dθ = π2 exp(−|u|).

If we use this result for the valuesu = vk −vl , u = vk −V −εe, u = vk −V +εe, u = vl −V
−εe, u = vl −V +εe, u = 0, andu = 2εe, we obtain from (3.33) the formula (3.32).

The main advantage of the distance (3.32) is, of course, that this formula is exact, and the
dependence of the distance on the vectore is shown clearly in the third term. On the other
hand, this formula includes as the second term a double sum, which requires a numerical
work of the ordern2

i in the clusteri havingni elements. Note that our aim is not to produce
only a few clusters of many elements, but rather to produce many clusters with four to
five particles in each which should be replaced by two. In such a situation the whole work
required for computing all distances corresponding to (3.32) remains of the capital order
O(n). The next observation is that the unit vectore is only involved in the third term of the
formula (3.32) which requiresO(ni ) numerical work. Our idea now is to try to maximize the
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FIG. 1. Sobolev distance via polar angleϕ.

third term in (3.32) in order to minimize the distance between both measures. Unfortunately,
the dependence of the Sobolev distance on the vectore is very complicated, having a lot of
local minima and maxima. We would like to illustrate this behaviour using the following
example. We randomly generate 128 particles corresponding to the distributionf0(v) (see
Section 4) and compute the vectore via (3.14). This vector is defined by

e = (cos(ϕ) sin(θ), sin(ϕ) sin(θ), cos(θ))T, 0 ≤ ϕ < 2π, 0 ≤ θ ≤ π.

In our example we obtainϕ ≈ 0.479 andθ ≈ 1.094. We now fix the value ofθ and plot
the Sobolev distance as a function ofϕ. The result is shown in Fig. 1. It is to be concluded
that we will not have a chance to determine the optimal value ofϕ numerically because
of the presence of many local extrema. On the other hand, the dependence of the Sobolev
distance one is rather weak. We will see in Section 4 that clustering particles correctly is
much more important than the choice of the vectore.

3.4. Clustering the Particles

Clustering means grouping similar objects by minimizing a certain criterion function or
other object-dependent properties. Clustering techniques are very common and useful in
many applications such as data analysis, data reduction, digital image processing, pattern
recognition and computer graphics. In the past many algorithms have been developed (see,
e.g., [1, 5–7, 13, 17, 18, 21]).

In this section we propose a solution to the problem stated earlier: finding a way to
partition the system of particles (3.1). As mentioned before, however, we are not interested
in position. Therefore the problem can be reduced to finding a set of clusters such that for
each clusteri = 1, . . . , n̂ the quantity

%i = g(i )ε(i ), (3.34)

i.e. the product of the cluster mass and the cluster temperature, is minimized (cf. (3.30),
(3.5), (3.9)). In addition, all%i should be nearly equal and lower than a given%. Thus the
resulting number of clusterŝn will depend on%.

However, clustering is known to be np-complete. Our intention here is not to find a method
which is as close as possible to the global optimum but to find an appropriate method which
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is both acceptable for the problem we are faced with and efficient enough to run several
times on large data bases.

In the following we propose a solution which is related to the method introduced by
Orchard and Bouman [13]. It is based on a hierarchical binary space subdivision and con-
strains the partitioning to have the structure of a binary tree. Each node of the tree represents
a subset, and the children of any node partition the members of the parent node. The method
of generating the binary tree is specified by% and by the method of splitting a node into
its two children. The algorithm starts with the whole data set in the root of the tree and
partitions each node until the quantity (3.34) is lower than%.

In order to limit the complexity of the splitting algorithm, a splitting plane is used. In the
algorithm proposed we determine the direction in which the cluster variation is greatest,
and then split the cluster with a plane perpendicular to that direction through the cluster
mean. More specifically, we determine the cluster covariance

R(i ) = M (i ) − V (i )
[
V (i )

]T

(cf. (3.6), (3.7)), whereV (i ) is the cluster mean. The normal direction of the splitting plane
is parallel to the eigenvector corresponding to the largest eigenvalue ofR(i ). Note that
(cf. (3.8), (3.9))

trR(i ) = trM (i ) − ∥∥V (i )
∥∥2 = E(i ) − ∥∥V (i )

∥∥2 = [
ε(i )

]2
.

4. NUMERICAL EXPERIMENTS

It is clear that reducing the number of particles produces an additional error in the
computational process. From the theoretical point of view this error can be held in check
by the estimates (3.30), (3.31). From the practical point of view it is extremely important
to investigate this additional error very carefully in order to be sure that the error due to
reduction algorithms does not become dominant in the computations. Since the numerical
solution of the spatially inhomogeneous Boltzmann equation is always faced with different
kinds of discretization errors, i.e. discretization of the computational domain, splitting free
flow and collision phases, sorting the particles in spatial cells, finite (and usually small)
number of particles per cell, etc., it is difficult to check the additional effect of reduction,
especially if we would like to compare different reduction strategies.

In our opinion it is better for our purpose to solve the spatially homogeneous Boltzmann
equation, i.e. to model the situation in one spatial cell. It is also useful to choose the collision
kernel which corresponds to pseudo-Maxwell molecules, because in this case exact formulae
for the time development of the moments are known even for nontrivial initial distributions
(cf. [3]).

We consider the problem of calculating the second moments

mi, j (t) =
∫
R3

vi v j f (t, v) dv, i, j = 1, 2, 3, (4.1)

and the third moments

ri (t) =
∫
R3

vi ‖v‖2 f (t, v) dv, i = 1, 2, 3. (4.2)
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The stochastic weighted particle method described in Section 2 is used with the parameter
γ = 1 (cf. (2.16)). This means that during each collision two additional particles are created.
The initial distribution is a mixture of two Maxwellians, namely

f0(v) = 1

2

1

(2πT1)3/2
exp

(
−‖v − V1‖2

2T1

)
+ 1

2

1

(2πT2)3/2
exp

(
−‖v − V2‖2

2T2

)
,

with V1 = (2, 0, 0), V2 = (−2, 0, 0), T1 = 2, T2 = 1.

4.1. Statistical Notions

First we introduce some definitions and notations that are helpful for the understanding
of stochastic numerical procedures.

The functionals to be calculated (4.1), (4.2) are of the form

F(t) =
∫
R3

ϕ(v) f (t, v) dv. (4.3)

According to (2.1), a functional (4.3) is approximated by the random variable

ξ(t) =
∫
R3

ϕ(v)µ(t, dv) =
n(t)∑
i =1

gi (t)ϕ(vi (t)). (4.4)

Note that this random variable depends on the valuen = n(0), which determines the quality
of approximation of the initial distribution by means of a point measure.

In order to estimate and to reduce the random fluctuations of the estimator (4.4), a
numberN of independent ensembles of particles is generated. The corresponding values of
the random variable are denoted by

ξ
(n)
1 (t), . . . , ξ (n)

N (t).

Theempirical mean valueof the random variable (4.4),

η
(n,N)
1 (t) = 1

N

N∑
j =1

ξ
(n)
j (t), (4.5)

is then used as an approximation to the functional (4.3). The error of this approximation is

e(n,N)(t) = ∣∣η(n,N)
1 (t) − F(t)

∣∣ (4.6)

and consists of the following two components:
The systematic error is the difference between the mathematical expectation of the

random variable (4.4) and the exact value of the functional, i.e.

e(n)
sys(t) = Eξ (n)(t) − F(t).

Thestatistical error is the difference between the empirical mean value and the expected
value of the random variable, i.e.

e(n,N)
stat (t) = η

(n,N)
1 (t) − Eξ (n)(t).
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A confidence intervalfor the expectation of the random variableξ (n)(t) is obtained as

I p =
[
η

(n,N)
1 (t) − λp

√
Varξ (n)(t)

N
, η

(n,N)
1 (t) + λp

√
Varξ (n)(t)

N

]
,

where

Varξ (n)(t) := E
[
ξ (n)(t) − Eξ (n)(t)

]2 = E
[
ξ (n)(t)

]2 − [
Eξ (n)(t)

]2
(4.7)

is thevariance of the random variable (4.4) andp∈ (0,1) is theconfidence level. This
means that

Prob
{

Eξ (n)(t) /∈ I p
} = Prob

{∣∣e(n,N)
stat (t)

∣∣ ≥ λp

√
Varξ (n)(t)

N

}
∼ p.

Thus, the value

c(n,N)(t) = λp

√
Varξ (n)(t)/N (4.8)

is a probabilistic upper bound for the statistical error.
In the calculations we use a confidence level ofp= 0.999 andλp = 3.2. The variance is

approximated by the corresponding empirical value (cf. (4.7)); i.e.

Varξ (n)(t) ∼ η
(n,N)
2 (t) − [

η
(n,N)
1 (t)

]2
,

where

η
(n,N)
2 (t) = 1

N

N∑
j =1

[
ξ

(n)
j (t)

]2

is theempirical second momentof the random variable (4.4).

4.2. Systematic Error—Long Time Behaviour

First we study the long time behaviour of the approximations (4.5) to the functionals
(4.1), (4.2). We consider the time interval [0., 30.].

The typical behaviour can best be observed from Fig. 2. The exact curves are displayed
by dashed lines and the confidence bands by solid lines. The stationary state is reached at
aboutt = 10. A systematic error can be detected clearly up ton = 64.

More complete data is contained in Table I. The supremum over the time interval of the
absolute error (4.6) is denoted byerr-m1,1 anderr-r1 for the functionalsm1,1(t) andr1(t),
respectively. The corresponding statistical error bounds (4.8) are denoted bycon f-m1,1

and con f-r1. Several other quantities relevant to the stochastic particle method are also
displayed. Here,ired denotes the number of reductions on the time interval, whileipart
denotes the number of particles in the system averaged over 50 observation points. Finally,
gminandgmaxdenote the averaged minimal and maximal weights in the system.

The systematic error is displayed in the logarithmic scale in Fig. 3. Here the small points
correspond toerr-m1,1 and the big points toerr-r1. As long as the error is larger than the
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FIG. 2. Momentsm1,1(t) (left) andr1(t) (right) for differentn.

statistical error bound there is a clear linear behaviour (corresponding to the ordern−1).
Inside the confidence interval the error fluctuates.

Note that the systematic error in the stochastic weighted particle method is comparable
to that in the standard method (cf. (2.30)), as Table II shows. Thus, the method provides
a correct approximation of the moments, despite the permanent blowup and the frequent
reductions of the system. These properties are illustrated by Fig. 4, where one single tra-
jectory is displayed in the casen = 128 (cf. line 6 of Table I).
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TABLE I

n N ired ipart gmax/gmin err-m1,1 con f-m1,1 err-r1 con f-r1

4 256000 36.6 7.42 1.18/0.46 0.667 0.013 1.916 0.110
8 128000 47.5 16.2 1.33/0.28 0.344 0.012 1.030 0.110

16 64000 53.4 32.0 1.46/0.20 0.168 0.010 0.480 0.109
32 32000 56.6 64.9 1.59/0.14 0.084 0.009 0.276 0.107
64 16000 58.3 130. 1.71/0.10 0.044 0.009 0.142 0.108

128 8000 59.4 263. 1.93/0.07 0.023 0.008 0.073 0.108
256 4000 60.1 527. 2.13/0.05 0.016 0.008 0.053 0.107
512 2000 60.8 1054. 2.29/0.04 0.006 0.008 0.040 0.106

1024 1000 61.0 2102. 2.41/0.03 0.007 0.008 0.069 0.111

4.3. Systematic Error—Short Time Behaviour

Figure 4 gives a long-term picture of the behaviour of the number of particles and colli-
sions in the system. A more precise description can be obtained by looking at the shorter time
interval [0., 3.] The functionals (4.1), (4.2) are calculated with the parametersn = 10240
and N = 100. If the number of particles reaches 4n then this number is reduced ton/4.
Figure 5 shows the behaviour of the number of particles, which grows exponentially up to
the corresponding maximum. Thus, on a small scale, the number of collisions is not linear
as Fig. 4 shows on a large time scale. Despite the strong fluctuations of the number of
particles in the system, the momentsmi,i (t), i = 1, 2, 3, andr1(t) are calculated correctly.
Here, as before, exact curves are displayed by dashed lines, and the confidence bands by
solid lines.

4.4. Reduction Error

Finally, we study the behaviour of the reduction error (cf. the right-hand side of (3.30))
dependent onn. During the calculation of the functionals on the time interval [0., 3.] the

FIG. 3. Systematic error dependent onn.
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TABLE II

n N err-m1,1 con f-m1,1 err-r1 con f-r1

8 128000 0.338 0.013 1.013 0.113
16 64000 0.166 0.012 0.497 0.113
32 32000 0.089 0.012 0.344 0.114
64 16000 0.051 0.012 0.167 0.116

128 8000 0.024 0.012 0.078 0.114
256 4000 0.015 0.012 0.100 0.114
512 2000 0.010 0.012 0.042 0.116

1024 1000 0.011 0.012 0.063 0.117

error bounds were evaluated and averaged. We considered different reduction strategies,
reducing the number of particles from 4n to n/4, n/2, andn, and from 2n to n. The
corresponding values of the error are displayed in Table III.

The reduction error is displayed in the logarithmic scale in Fig. 6. Here the big points
correspond to the first column of Table III, while the small points correspond to the third
column. The other columns would look similar. Figure 6 shows the linear behaviour of
the reduction error. The lines corresponding to different columns of Table III are roughly
parallel. A comparison of the particular values suggests an order of convergence close to
n−1/3.

5. CONCLUDING REMARKS

In this paper we presented a detailed study of reduction procedures for the stochastic
weighted particle method (SWPM). These procedures are based on appropriate clustering
of the particle system in the velocity space. Different methods are provided which possess

FIG. 4. One trajectory forn = 128.
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FIG. 5. Short time interval (n = 10240).

conservation properties for all physically relevant macroscopic moments. These results
represent a significant, necessary improvement of the SWPM, which can now be used for
calculations for long time intervals.

Theoretical error bounds have been obtained both in the bounded Lipschitz metric and
in a particular Sobolev norm. These results were illustrated by detailed numerical tests for
the spatially homogeneous Boltzmann equation. The convergence order with respect to the
particle numbern was found to ben−1 for the macroscopic moments. A comparison with the
standard method (complete weight transfer, no reduction) shows that the SWPM not only

TABLE III

n 4n : n/4 4n : n/2 4n : n 2n : n

16 2.234 1.815 1.436 1.322
32 1.900 1.527 1.195 1.086
64 1.572 1.274 0.994 0.895

128 1.324 1.063 0.815 0.736
1024 0.725 0.566 0.429 0.387

10240 0.350 0.269 0.202 0.183
102400 0.164 0.126 0.095 0.085
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FIG. 6. Reduction error dependent onn.

has no additional error but also contains several useful degrees of freedom. Calculations for
long time intervals (far beyond the relaxation time) show the stability of the SWPM.

Our main objective for future research is coupling the spatially inhomogeneous nonlinear
Boltzmann equation with the system of Euler equations in regions of local equilibrium.
In terms of numerical procedures we will face the problem of combining stochastic and
deterministic algorithms. The robust determination of the coupling boundary, i.e. automatic
domain decomposition, requires reliable computation of several first moments of the density
function. The results obtained by stochastic particle methods are perturbed by stochastic
fluctuations, especially in regions of low particle density. Here we expect a significant
improvement of numerical results using the SWPM.
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