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Different ideas for reducing the number of particles in the stochastic weighted
particle method for the Boltzmann equation are described and discussed. The cor-
responding error bounds are obtained and numerical tests for the spatially homo-
geneous Boltzmann equation presented. It is shown that if an appropriate reduction
procedure is used then any effect on the accuracy of the numerical scheme is negli-
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1. INTRODUCTION

In this paper we continue the development and analysis of the stochastic weighted |
cle method (SWPM) for kinetic equations. This method was introduced in [16], where
presented numerical results for the one-dimensional heat exchange problem. The cc
gence of the method was investigated in [14], where we were also able to show a dr
reduction of the stochastic fluctuations using the SWPM for one model kinetic equat
In [15] we presented a detailed study of different effects of the numerical solution of 1
equation. The computation of the macroscopic quantities in the regions with low part
density was of special interest. We refer to [9, 8] to complete the list of references for
SWPM.
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STOCHASTIC WEIGHTED PARTICLE METHOD 383

The main object of our interest is the spatially inhomogeneous nonlinear Boltzm
equation for dilute monoatomic gases [4]

2—:(t, X, v) + (v, grad, f (t, X, v))

=/ / B, w, e)[ f(t,x,v)ft,x,w)— ft,x,v)ft,x,w)]dedw, (1.1)
R J <
f(0, X, v) = fo(X, v), (1.2)

wheret > 0 is the time variables € 2 c R?is the space variable, and: R? is the velocity
variable. The vectoe is from the unit spheré&?. The functionB(v, w, €), the so-called
collision kernel, has the form for the “hard spheres” model

B(v,w,e) = (v —w, )], (1.3)

1
23/ 2k
wherex denotes the Knudsen number. The postcollision velocitiaadw’ are defined by

V=v—@Ww—-—w,e)e, wW =w+@w—w,ee (1.4)

The main difference between the SWPM and other particle schemes for the Boltzn
equation [2, 12, 11] is the idea of a random weight transfer between particles during
lisions. The distribution functiorf (t, x, v) in the low density regions of the flow can then
be resolved more accurately by producing many particles of low weight. This procec
usually leads to an increase in the number of particles in the system. If this increase c
be compensated in some natural way, for example, if the new small particles cannot |
the computational domain (as in the heat exchange problem), then it becomes impel
to reduce the number of particles. The problem of reducing the number of particles
already been discussed in [10, 19, 16].

In the present paper we give a systematic study of the theoretical and numerical as
of reducing the number of particles including the theoretical estimates for the error in
bounded Lipschitz metric, as well as in the Sobolev sfiice Furthermore, we discuss a
possible choice of the reduction parameters in both a random and a deterministic we
the numerical tests we concentrate on the influence of the reduction on statistical v:
such as empirical mean and confidence intervals. It is shown that an appropriate redu
procedure has little effect on the accuracy of the numerical scheme.

The paper is organized as follows. A brief description of the SWPM is given in Sectiol
In Section 3, the main part of the paper, we discuss different approaches to the redu
of the number of particles. The results of our numerical tests are presented in Secti
Finally, we draw some concluding remarks.

2. DESCRIPTION OF THE SWPM

The main idea of all particle methods for the Boltzmann equation (1.1), (1.2) is
approximation of the sequence of measures

f(tg, x,v)dxdv, tx=kAt, k=0,1,..., At>0,
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by a system of point measures

n(t)

1t dX, dv) = gj (18 .y 10 (AX, dv), k=0,1,..., (2.1)
j=1

defined by the families of particles
(9 (t0). Xj (6, vj ()Y, k=0.1..... (2.2)

The behaviour of the system (2.2) can be briefly described as follows. The first ¢
(k=0) is an approximation of the initial measure

fo(X, v) dXx dv
by a system of particles (2.2) ftg= 0. Usually, one uses constant weights
gi® =9, j=1,...,n(0).
Then the particles move according to their velocities, i.e.
Xj (1) = Xj(t) + (t — t)vj (t), t € [tk, tkya].

If a particle crosses the “outflow boundary” during this step then this particle will |
removed from the further simulation. The velocity of a particle changes according to
boundary condition if this particle hits the “boundary of the body”; the particle continu
the movement with a new velocity for the rest of the time interval. The weights of partic
remain the same during this “free flow step.” Through the “inflow boundary” new particl
of standard weight come into the computational domain.
The “collision step” can be described as follows. First, all particles are sorted in

spatial cells2,, £=1, ..., ¢.. These cells define a nonoverlapping decomposition of tl
computational domain

£
Q=]
=1
Ineachcelk2,, £=1, ..., £, collisions ofn, (t) particles are simulated. This is the mos

crucial part of the whole procedure. Here we also have the main difference betweer
SWPM and other particle methods which use constant weights. The collision simula
step in one spatial cefe,, £ =1, ..., £, corresponds to the mollified equation [4]

ﬂ(t,x,v):// / he(x, Y)B(v, w,e)[ f(t, x,v") f(t,y, w)
ot oJrd /e
—ft, x,v)f(t,y, w)]dedwdy, (2.3)

where

1
mmwzﬁﬁ%mwww (2.4)
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is a spatial mollifier|$2,| denotes the volume of the cell,, and 9, (x) is the indicator
function of the sef2,.
The stochastic process of the collisions is

Z) ={(gj0), x; M), v;()), j=1,...,n}, t>1. (2.5)

Here we now use the local numbering of particles in the@eland notata = n,(tx). The
infinitesimal generator of the process (2.5) is given by

1. o
A@@ = ) /gliq(z,l,J,e)(<D(J(z,I,J,e))—CD(Z))de (2.6)

l<i#j=n

where® is a measurable function of the argument

Z= ((gl’ Xl’ Ul)’ ey (gn, Xn» Un)) (27)
and
(k> X, Vi), if k<nk=#i,j,
(gI_G(ZaI’J7e)aXI5vI))7 Ifk:|7
@i, j,ex =1 (9 —G(zi, ], e,xj,v), ifk=]j, (2.8)
(G(zi,j,e), X%, ), if k=n+1,
(G(zi, ].8). %}, v)), if k=n+2,

whereu], v are defined as in (1.4). The functi@\z, i, |, e) is called “weight transfer
function.” This function, the intensity kernglz, i, j, e) of the generator (2.6) and the col-

lision kernel of the Boltzmann equation (2.3), (2.4) are connected via the basic relation
Q(Za iv j7 e)G(Z7 iv j7 e) = hK(Xi ’ Xj)B(vi > Uj, e)gi g] (29)
which has been proved [15] to be sufficient for the convergence of the method.
The behaviour of the process (2.5) is as follows. The waiting titag between process

jumps can be defined either as a random variable with the distribution

Probz(z) >t} = exp(—7 (2)t),

where
N 1 . .
@) =5 > Gmaz i) (2.10)
1<i#j<n
and
a0 des fnaizi. . (2.11)

or as a deterministic object by

1(2) =72 L (2.12)
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Then the collision partners (i.e., the indi¢eend j) must be chosen. The distribution of the
parameters and | is determined by the probabilities

qmax(zv is J)
P —. (2.13)
Zlgi;ﬁjgn qmax(zv I J)
For giveni and j, the jump is fictitious with probability (cf. (2.11))
i, ],ede
(- Jga@i.j.ede (2.14)
qmax(z’ I’ J)

Otherwise, the process (2.5) jumps to a new statel(z, i, j, €) as described in (2.8). The
distribution of the parameteris

q(z.i, j,e

Jsa@i.j.ede (2.15)

There is a degree of freedom in our method, namely an appropriate choice of the we
transfer functiorG. This function should always fulfil the condition

G(z i, j, € < min(gi, gj)
in order to avoid negative weights in (2.8). We consider the funddion the form

min(g;, g;)

CzLlo=1""11¢
(z,i,],8 1+y(zi, j.e’

(2.16)

wherey (z,i, j,e) >0 is a parameter of our method which can be chosen arbitrarily,
pending on our interest. The parameteran vary in different regions of the flow (ce&l,)
for different collision partners and j or even as a function of the unit vectarThe jump
intensity functiong is then defined from the basic relationship (2.9) as

q(z,i,j,8) = A+ y(zi, j,e)maxg, gjphe(x, X)) B, vj, ). (2.17)

According to (2.11), we need a majorant for the function (2.17). Note that the funct
(2.4) is now just a constant, i.e.

he(xi, Xj) = ﬁ’
¢

because we have assumed that all particles are sorted in cells. Furthermore, we u:
majorants

1+y(z7|5 J’e) S 1+Cy.maXa (218)
/ B(Uiv vjte)def CB.max»
& (2.19)
max(gi, 9j) < G +9j — 9min(2),

where (cf. (2.7))

Omin(2) = min g, (2.20)
1<i<n
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to obtain

Gmax(Z. 1, ) = 1+ C, mad) Cmax——[0i + 9j — Gmin(2)]. (2.21)

IQI

Now we are able to compute the waiting time parameter via (2.10)

7(2) = (1 +C, . madCh, maxI | (n — D[29sum(2) — NGmin(2)], (2.22)

where (cf. (2.7))
Osum(2) = Z Oi, (2.23)

as well as all other parameters of our process. The probability of the paramatet§ is
determined via (2.13) (cf. (2.21), (2.10), (2.22))

g + dj — Omin(2)
(N — D[2gsum(2) — NGmin(2)]

(2.24)

The parameteris then to be chosen according to the probability

N —=2)g + dsum(2 — (N — Dmin(2)
(N = D[2gsum(2) — NGmin(2)]

(2.25)

Giveni, the parametey is chosen according to the probability

G + 9j — Omin(2)
(N=2)g + Gsum(2) — (N — D) Gmin(2)”

(2.26)

Giveni andj, the jump is fictitious with probability (2.14) (cf. (2.17), (2.21))

JeA+y(zi,j,©)Bi,vj,e)de maxg, g;)

1- ;
(1+ Cy.max) Cs,max G + 9j — Imin(2)

(2.27)

otherwise the distribution of the parametds (2.15) (cf. (2.17))

A+ y(zi, j,e)B,vj, e
fsz(l—i—)/(z, i,],€)B(v,vj,e)de

(2.28)

and the new state B= J(z, 1, |, e) as defined in (2.8).
Now we shall consider some special cases. For the Boltzmann equation (1.1) witt
collision kernel (1.3) we obtain for the const&y max (cf. (2.19))

/ B( e)de = /|( olde= Vil zn/n|cose|sin9d9d
Vi, Vi, = —— v — Vi, =
4 v 2/ 2nk J I ] 2V2xx Jo Jo v

Vi — U; U
=|| J|< ¢

Ve T Ve

whereU, denotes the maximum relative velocity in the c@]l.

= CB,maXa (2-29)
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Consider thespecial case
gi =const=g, y=0.
From (2.16) we obtain
G(zi,j,e)=qg. (2.30)
We then have (cf. (2.20), (2.23))
Omin(2) =9, Gsum(2) = NQ, (2.31)

and the waiting time parameter can be computed according to (2.22), (2.18), (2.29), (:
as
2 ) 1 U
(2)= ———
22k |82
The deterministic time counter (2.12) is then nothing other than Bird's well-known *
time counter”

gn(n — 1).

o 2VR
(2 =7(2) _7gn(n—1)U[

The parametersand j are distributed uniformly (cf. (2.24)). The jump is fictitious with
probability (cf. (2.27), (2.29))

[vi — vl
U,

1—

The vectore is distributed on the surface of the unit sph&feaccording to (2.28), i.e.

B(vi, vj, e
fSZ B(vi, vj, e)de'

(2.32)

There is no increase in the number of particles in the system. The particles-foand
k=] in (2.8) have zero weights according to (2.30) and should therefore be removed f
the system.

Consider thesecond special casehere the weights of particles are different but th
parametey is still considered to be zero,

g — arbitrary y =0.
From (2.16) we obtain
G(z i, j,& = min(g, 9;) (2.33)
and from (2.22), (2.29)

o 272 ||
T(2)=n(2) " = (n— 1)[ngum(z) — ngmin(Z)]Uz
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for the deterministic time counter (2.12). The parameitensd | are distributed according
to (2.24). The jump is fictitious with probability (cf. (2.27), (2.29))

lvi —vj|  maxg,g;)
U g +9 —min(2

1-—

The vectore is distributed according to (2.32).

The number of particles increases by one in each collision with unequal weights, acc
ing to (2.8) and (2.33). If all initial particles and all inflow particles have the same weic
then this case is identical to the previous one. Here we would like to point out that
SWPM is a generalization of Bird's DSMC method.

In the third special casewe choose the constaptunequal zero in one cef?, during
the fixed time intervaltf, t, 1], i.e. y is independent of, j, ande,

g — arbitrary y = const> 0.
From (2.16) we obtain

min(gi, 9;)

G(Zvivjae): 1+)/

)

and from (2.22), (2.29)

o 2V 2|
@)= " =17 ¥ (N — D[2gsum(2) — NGmin(2)]U¢

for the deterministic time counter. All other parameters of the process remain the sam

In this case the number of particles increases by two in each collision. This proce
can be used efficiently for reducing stochastic fluctuations arising in computation of
macroscopic quantities in low particle density regions, as we showed in [14].

But the new small particles move and will probably reach the region where the part
densityisnormal. Thereitis necessary to use the second special case (2.33) for the colli
which means the number of particles will increase further without any advantage b
gained. The best situation is, of course, if the particles disappear through the “out
boundary” of the computational domain at a rate corresponding to the “production r:
there. In such a situation we will still be dealing with an asymptotically constant numbe
particles, but with more small particles in the low density regions (this is our improveme
which are on the way to the “outflow boundary” (this is the price).

There are certainly many situations when the number of particles should be red
during the calculations. For example, if we solve a problem in a closed computatic
domain then we have no chance for outflow. How should reduction be organized? |
large is the additional error due to the reduction procedure? How much additional work
be required? We will try to answer these questions in the next section.

3. REDUCTION OF THE NUMBER OF PARTICLES

Suppose the system of particles is given

@, %,v), i=1....n, (3.2)
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where the number of particlesis too large and should be reduced. Thus the objective is
construct a new system

@.%.0), i=1..,/ f<n, (3.2)

having far fewer particles but such that the corresponding empirical measures still apf
imate the solution of the Boltzmann equation.

In fact, there are two problems. The first one is dividing the system (3.1) into a num
f of groups or clusters

(Gj, %ij,vij), T=L....0, j=1...,m, (3.3)

with

M-
=]

I

>

i=1

We will deal with this problem in Subsection 3.4.
The second problem is replacing each cluster hamjng 3 by few particles and in the
simplest case by two particles

(@1, X1, V1), (G2 K2, Vi2), 1:m >3 (3.4)
The new number of particles after reduction becomes
i < 2.
There are two things we have to consider in reduction: the conservation of the macrosc

guantities and control over the additional error.
Let us introduce the following notations for a clusitdraving more than three particles:

n;
gV = Z 9. (3.5
i=1
for the mass of the cluster;
. . nl
gV =3 "gijuij, (3.6)
j=1
for the momentum of the cluster;
. . n‘
g"MO =3 "g v (3.7)
j=1

for the flow of the momentum of the cluster;

n;
g(i)E(i) — g(i)trM(i) — Z 9ij ”v”_ ”2’ (38)
=1



STOCHASTIC WEIGHTED PARTICLE METHOD 391

O — JED ||V<i>||2, (3.9

_ 10 . .
q¥ = Ezgi,j (vij = VO |Juij = VO?
=1

: (3.10)

for the heat flux vector of the cluster.

We can easily see that if we conserve only those quantitiesg®V @, and E® which
correspond to the conservation laws of the Boltzmann equation, then the simplest choi
the pair (3.4) is

Gi1=0Gi.=9"/2 (3.11)
G1=VO 4ele fi,=vh_che ec (3.12)
The positions of new particles (3.%)1, X » can be randomly chosen from the old set o
positions
Xi={x;,j=1...,n} (3.13)

Note that we do not use all degrees of freedom now; i.e., we choose two new part
of equal weight and randomly choose a ve@am the unit sphere. Here we have thres
additional degrees of freedom which can be used in different ways. In [19] the auf
requires the conservation of all main diagonal components of the flow of momentum (
instead of the trace. By doing so the veat@an be defined (except for the sign of the singl
components) as

1 , -
&=+ Ml — V]2 k=123 (3.14)

The weights of the particles remain equal.

3.1. Conservation of the Heat Flux

In the following we show how to choose the pair of particles (3.4) using all possil
degrees of freedom in order to conserve, not only invariants of the collision integral,
also the heat flux vector as defined in (3.10).

Let us choose the velocities of the particles (3.4) in the form

Gii=VY 4ae Bo=VD -ge ecS (3.15)

wherex andg are positive numbers. From (3.5)—(3.10) we obtain

Gi1+G2= g®, (3.16)

Gi 1o — Gi 28 =0, (3.17)
Gi10% + G 2B% = gV (), (3.18)
(610 + Gi 8% e =2q9". (3.19)

From (3.19) it is clear that ifl"’ # 0 then vectoe should be chosen as

e=a"/[q"].
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If @ =0 then vector can be chosen randomly on the surface of the unit spEe
corresponding to (3.14).
We now solve the system (3.16)—(3.19) using the notation

a=0eV, 9>1 (3.20)
From (3.17) we first obtain
p= 1, (3.21)
G2

Then using (3.18), (3.21), and (3.20) we get

A2

6 R
gl ]_O[ +g| 25 —g| 10{ +g|2 o[ _gl (8(|)>2+~I_,102(8(|))2
G7 9i2

= %ez‘(ﬂ”)z(ghl + o) = g“>(e<i>)2%92 =g (eM)? (3.22)

i.2 92
Thus, (3.22), (3.16), and (3.21) yield

92
1+ 02

i b1
G = g<”1+92, Gio=g" (3.23)
N0
= —. 3.24
B="5 (3.24)

All unknowns are now represented By If we put (3.20), (3.23), and (3.24) in (3.19)
then we obtain the final equation fér

. 1 3 ) 62 (8(l)) ) (8(”)3 1
, _— Oy _ g® —qg® 3_ =
Ga0” = 628" = 0V 50 ()~ 9V g = 1+92(0 9)
£® )
_ g )wz 1) =2|jqV[,
or

o, ol

g(l) (8“)) —1=0. (3.25)

The equation (3.25) is always solvable and only one of its solutions, namely

: 12
9<‘)=W+¢1+(quu_ (3.26)

g<l>(8<n>)3 ga))z(g(n))G

fulfils the condition (3.20).
Note that ifq®’ = 0 we will automatically obtain the simplest solution (3.11), (3.12).
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3.2. Lipschitz Metric

In this subsection we give a brief summary of the results published in [16]. We conside!
bounded Lipschitz metric as a distance between two measu@s, dv) andv,(dx, dv)
defined as

o(vi, v2) = sup , (3.27)

el <1

/ <p(x,v)v1(dx,dv)—/ @(X, v)v2(dXx, dv)
QxR3 QxR

where

X,v) — ,w
ol = max< suplp(x. vy, sup 1PV —ely >|)_
(%,v) xw#yw) X =Y+ llv—w]

The main result is the following lemma.
LEMMA 1. Let(3.3) be a given system of particles in a cluster and the particles
(.1, X1, V1), (Gi2» Xi 2, Vi 2)

be chosenaccording{8.11), (3.12). Then for the bounded Lipschitz metf&27) between
the measures

n;
M(I) = Z gi~j8(xi,j»vi.1) (3-28)
j=1
and
~ (i g(i)
at = = i T I%202) (3.29)

the estimate
o(n?. i) = 29 (¢ + diam(x))

is valid, wheree ) and % are defined in3.9) and(3.13), respectively.

Using the triangle inequality we obtain the corresponding result for the whole syste
(3.1) and (3.2):

o, iy <2 g (e + diam(Xy)). (3.30)
i=1

On the other hand, with a similar technique for the reduction procedure (3.15), (3.
(3.23), (3.24), (3.26) we obtain an estimate

eV 42 diam(xi)>, (3.31)

n ) 10}
=Y g0 1+ ———
o(u, i) g ([ 1t (9<i>)2

i=1

which is slightly better than the previous one.
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Note that the dependence of the particles (3.4) on the choice of the unit géstost in
both estimates (3.30) and (3.31). This means that for the reduction technique correspol
to (3.14) the estimate (3.30) holds too. We would like to neglect the error relating to
influence of the space distribution, because we assume that the valugXgiasmsmall
enough already. On the other hand, the estimates (3.30), (3.31) show us the possibil
clustering the particles. The clusters have to be chosen so that the product of the mass
clusterg® with its “temperature’" is small. The corresponding discussion can be four
in Subsection 3.4.

3.3. Sobolev Norm

In this subsection we use a different distance between the measures (3.28), (3.29) v
is the norm in the Sobolev spat& 2. The equivalence of the weakonvergence of the
measures and of the convergence in the Sobolev nHims < —d/2, whered denotes the
space dimensiord(= 3 in our case), was proved in [20].

Let us first introduce some notations which are needed(dfv) is a measure then the
complex-valued function

i) = [ expa, vt

is called the Fourier transformation of the measug@v). The Sobolev norm of this measure
is then defined by

lill§ = /Rgm £1%)° 12(6)1* dé.

In this subsection we neglect the error due to the spatial distribution of the particles
compute only the Sobolev norm of the difference between the meagsared.i (cf. (3.28),
(3.29)) defined by the systems of the particles

((gls Ul)s LR} (gl"lv Un)), ((g/zi V + 8e)7 (g/z’ V - Se))v

whereg, V, ande are defined corresponding to (3.5)—(3.8). We do not use the cluster in
i in this subsection so we do not overload the formulae, bearing in mind that all the thi
we consider here will have to be summed up later for all clusters.

LEMMA 2. The Sobolev norm of the difference of the measurasd i in H? is given
by

- 1 -
e — L2, = 3 <(1+ exp(—26))g> +2 Y gkg exp(—|vk — ui)
ki=1

—29)  oklexp(—|v — V — cel) + exp(— v — V + eel)]> . (3.32)
k=1

Proof. We begin the proof by computing the Fourier transformation of the meagure
and.:

i) = [ expn(€ vdo) = Y- g expn €. vy).

=1
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fie) = /R [ XRI(E, 0)A() = 3 eXPI(E, V — 56) +  eXPU(E, V + £€))
_ Z gj ( expi(¢,V —¢e) + = 1 exp(|(§ V + se)))

Thus, we obtain

_ s . 1 1
A —fil = o ( cos&. v —u) — 5 cosé, vk — V — e€) — = cosE, v — V + €)
k=1 2 2
1 1 1 1
——cog&, v —V +¢ee)— —co9E, v —V +¢€) + = + = Ccog§, 2¢e) .
2 2 2 2
(3.33)

Therefore it is necessary to compute the integral

cogé&, u)

r (1+[£]9)2 %

for variousu involved in (3.33). We use the spherical coordinaigsy(0) whereby the
z-axis has the same direction@adJsing (&, u) = |£] |u| cost = pa(0) we obtain

oo 2
COsE. U) dg—z/ dgo/ smede/o Q" coslea®))

w (L+18[2)2 (1+ 0?7
1 Zexplia(6)z)
—47T/0 S|n9d92R Awdz
/2 2
:471/ Tl Re{w,l]sinede
0 (14222

/2 T
=47r/ 71— (©) exp(—a(9)) sind o
0

/2
= 712/ (1 — |u| cosd) exp(—|u| cost) sind db = 2 exp(—|ul).
0

If we use this result for the valuels= v — v, u=v—V —se,Uu=vx—V +ee, U=y —V
—ce, U=y —V+ee, u=0,andu = 2¢ce, we obtain from (3.33) the formula (3.32). =

The main advantage of the distance (3.32) is, of course, that this formula is exact, an
dependence of the distance on the veetisrshown clearly in the third term. On the other
hand, this formula includes as the second term a double sum, which requires a nume
work of the orden? in the clustei havingn; elements. Note that our aim is not to produc
only a few clusters of many elements, but rather to produce many clusters with fou
five particles in each which should be replaced by two. In such a situation the whole v
required for computing all distances corresponding to (3.32) remains of the capital o
O(n). The next observation is that the unit veatas only involved in the third term of the
formula (3.32) which require® (n;) numerical work. Our idea now is to try to maximize the
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FIG. 1. Sobolev distance via polar angle

third termin (3.32) in order to minimize the distance between both measures. Unfortuna
the dependence of the Sobolev distance on the vedsorery complicated, having a lot of
local minima and maxima. We would like to illustrate this behaviour using the followir
example. We randomly generate 128 particles corresponding to the distriligtion(see
Section 4) and compute the vectvia (3.14). This vector is defined by

e = (cogyp) sin(), sin(p) sin(@), cog¥))’, 0<¢ <27,0<6 <.

In our example we obtaip ~ 0.479 and ~ 1.094. We now fix the value df and plot
the Sobolev distance as a functiorngofThe result is shown in Fig. 1. It is to be concludec
that we will not have a chance to determine the optimal valug nfimerically because
of the presence of many local extrema. On the other hand, the dependence of the Sc
distance ore is rather weak. We will see in Section 4 that clustering particles correctly
much more important than the choice of the veetor

3.4. Clustering the Particles

Clustering means grouping similar objects by minimizing a certain criterion function
other object-dependent properties. Clustering techniques are very common and use
many applications such as data analysis, data reduction, digital image processing, p
recognition and computer graphics. In the past many algorithms have been developed
e.g., [1,5-7, 13,17, 18, 21]).

In this section we propose a solution to the problem stated earlier: finding a wa
partition the system of particles (3.1). As mentioned before, however, we are not intere
in position. Therefore the problem can be reduced to finding a set of clusters such the
each cluster=1, ..., i the quantity

0 =gV, (3.34)

i.e. the product of the cluster mass and the cluster temperature, is minimized (cf. (3
(3.5), (3.9)). In addition, alb; should be nearly equal and lower than a gigefThus the
resulting number of clustefswill depend onp.

However, clustering is known to be np-complete. Our intention here is not to find a met
which is as close as possible to the global optimum but to find an appropriate method w
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is both acceptable for the problem we are faced with and efficient enough to run se
times on large data bases.

In the following we propose a solution which is related to the method introduced
Orchard and Bouman [13]. It is based on a hierarchical binary space subdivision and
strains the partitioning to have the structure of a binary tree. Each node of the tree repre
a subset, and the children of any node partition the members of the parent node. The m
of generating the binary tree is specified dand by the method of splitting a node into
its two children. The algorithm starts with the whole data set in the root of the tree
partitions each node until the quantity (3.34) is lower than

In order to limit the complexity of the splitting algorithm, a splitting plane is used. In tf
algorithm proposed we determine the direction in which the cluster variation is grea
and then split the cluster with a plane perpendicular to that direction through the clu
mean. More specifically, we determine the cluster covariance

RO — m® _ V(”[V(”}T

(cf. (3.6), (3.7)), wher&/ ¥ is the cluster mean. The normal direction of the splitting plar
is parallel to the eigenvector corresponding to the largest eigenvaliRé’ofNote that
(cf. (3.8), (3.9)

trRO = trm® _ HV<i>H2 — O _ HV(i)HZ — [80)]2'

4. NUMERICAL EXPERIMENTS

It is clear that reducing the number of particles produces an additional error in
computational process. From the theoretical point of view this error can be held in cf
by the estimates (3.30), (3.31). From the practical point of view it is extremely import
to investigate this additional error very carefully in order to be sure that the error du
reduction algorithms does not become dominant in the computations. Since the nume
solution of the spatially inhomogeneous Boltzmann equation is always faced with diffel
kinds of discretization errors, i.e. discretization of the computational domain, splitting f
flow and collision phases, sorting the particles in spatial cells, finite (and usually sm
number of particles per cell, etc., it is difficult to check the additional effect of reductic
especially if we would like to compare different reduction strategies.

In our opinion it is better for our purpose to solve the spatially homogeneous Boltzm,
equation, i.e. to model the situation in one spatial cell. It is also useful to choose the colli
kernelwhich correspondsto pseudo-Maxwell molecules, because in this case exact forr
for the time development of the moments are known even for nontrivial initial distributic
(cf. [3D).

We consider the problem of calculating the second moments

mi,j(t)z/ vivjf(t,v)dv, i,j=123, (4.2)
]R3
and the third moments

ri(t):/ villvll? f(t,v)dv, i =123 (4.2)
JR®
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The stochastic weighted particle method described in Section 2 is used with the parar
y = 1(cf. (2.16)). This means that during each collision two additional particles are crea
The initial distribution is a mixture of two Maxwellians, namely

SO SN SO G U7 W N SO O U
oW =5 2z P 2T, 2 21,32 P 2T, )

withV1=(2,0,0), Vb =(-2,0,0), T:=2, T, =1.

4.1. Statistical Notions

First we introduce some definitions and notations that are helpful for the understan
of stochastic numerical procedures.
The functionals to be calculated (4.1), (4.2) are of the form

F@t) = / o) f(t,v) dv. (4.3)
R3

According to (2.1), a functional (4.3) is approximated by the random variable

n()

60 = [ ot =3 6000 (4.9
i=1

Note that this random variable depends on the valan(0), which determines the quality
of approximation of the initial distribution by means of a point measure.

In order to estimate and to reduce the random fluctuations of the estimator (4.4
numberN of independent ensembles of particles is generated. The corresponding valu
the random variable are denoted by

V@), ..., 69 ).

Theempirical mean valueof the random variable (4.4),
1 N
(N 1y W]
n(t) = N J§=1 § (1), (4.5)

is then used as an approximation to the functional (4.3). The error of this approximatic
"Nty = [n"V 1) - F) (4.6)

and consists of the following two components:
The systematic error is the difference between the mathematical expectation of t
random variable (4.4) and the exact value of the functional, i.e.

elut) = EE™(t) — F(1).

Thestatistical error is the difference between the empirical mean value and the expec
value of the random variable, i.e.

et ="V ) - EE™ ).
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A confidence intervalfor the expectation of the random varial§l® (t) is obtained as

(n)
_ [ n, N)(t)—)»p /Varf (t) i N)(t)+)»p [Var§ (t)]

where
Varg™ (1) = EfV (0 - EEV 0] = EE" 0] - [Es7 0] @)

is the variance of the random variable (4.4) ange (0,1) is theconfidence level This
means that

o)
Prob{ E&™(t) ¢ I,} = Proh{@?g{“(t)] . Ap\/@} .

Thus, the value

c™N () = apy/Vare™(t)/N (4.8)

is a probabilistic upper bound for the statistical error.
In the calculations we use a confidence levepef 0.999 andi, = 3.2. The variance is
approximated by the corresponding empirical value (cf. (4.7)); i.e.

Varg® ) ~ n"N () — [n"V 1)),

where

[y
=z

(MN) ey & g™
n5 <t>—N§ ®]°

is theempirical second momenbf the random variable (4.4).

4.2. Systematic Error—Long Time Behaviour

First we study the long time behaviour of the approximations (4.5) to the function
(4.1), (4.2). We consider the time interval [0., 30.].

The typical behaviour can best be observed from Fig. 2. The exact curves are displ
by dashed lines and the confidence bands by solid lines. The stationary state is reacl
aboutt =10. A systematic error can be detected clearly up+$o64.

More complete data is contained in Table I. The supremum over the time interval of
absolute error (4.6) is denoted byr-m; ; anderr-r4 for the functionalsny 1(t) andry(t),
respectively. The corresponding statistical error bounds (4.8) are denoteohlyn; 1
andcon fr;. Several other quantities relevant to the stochastic particle method are
displayed. Hereired denotes the number of reductions on the time interval, wip#et
denotes the number of particles in the system averaged over 50 observation points. Fi
gminandgmaxdenote the averaged minimal and maximal weights in the system.

The systematic error is displayed in the logarithmic scale in Fig. 3. Here the small pc
correspond te@rr-my 1 and the big points terr-r;. As long as the error is larger than the
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FIG. 2. Momentsmy;(t) (left) andr,(t) (right) for differentn.

statistical error bound there is a clear linear behaviour (corresponding to thenorger
Inside the confidence interval the error fluctuates.

Note that the systematic error in the stochastic weighted particle method is compat
to that in the standard method (cf. (2.30)), as Table Il shows. Thus, the method prov
a correct approximation of the moments, despite the permanent blowup and the frec
reductions of the system. These properties are illustrated by Fig. 4, where one single
jectory is displayed in the cagse= 128 (cf. line 6 of Table I).
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TABLE |

n N ired ipart gmax/gmin eFrm; ; con tmy err-ry con fry
4 256000 36.6 7.42 1.18/0.46 0.667 0.013 1.916 0.11C
8 128000 47.5 16.2 1.33/0.28 0.344 0.012 1.030 0.110
16 64000 53.4 32.0 1.46/0.20 0.168 0.010 0.480 0.1069
32 32000 56.6 64.9 1.59/0.14 0.084 0.009 0.276 0.107
64 16000 58.3 130. 1.71/0.10 0.044 0.009 0.142 0.108
128 8000 59.4 263. 1.93/0.07 0.023 0.008 0.073 0.10€
256 4000 60.1 527. 2.13/0.05 0.016 0.008 0.053 0.107
512 2000 60.8 1054. 2.29/0.04 0.006 0.008 0.040 0.10¢€
1024 1000 61.0 2102. 2.41/0.03 0.007 0.008 0.069 0.111

4.3. Systematic Error—Short Time Behaviour

Figure 4 gives a long-term picture of the behaviour of the number of particles and c
sionsinthe system. A more precise description can be obtained by looking at the shorter
interval [0., 3.] The functionals (4.1), (4.2) are calculated with the parameters0240
and N = 100. If the number of particles reaches then this number is reduced 4.
Figure 5 shows the behaviour of the number of particles, which grows exponentially u
the corresponding maximum. Thus, on a small scale, the number of collisions is not li
as Fig. 4 shows on a large time scale. Despite the strong fluctuations of the numb
particles in the system, the moments; (t), i =1, 2, 3, andr4(t) are calculated correctly.
Here, as before, exact curves are displayed by dashed lines, and the confidence bal
solid lines.

4.4. Reduction Error

Finally, we study the behaviour of the reduction error (cf. the right-hand side of (3.3
dependent om. During the calculation of the functionals on the time interval [0., 3.] th

® ’ . . .
of ] .
[ ]
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-1 F . .
]
[ )
ok Y ]
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® °
iy . o .
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- L ° J
5 1 2 A A hd
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FIG. 3. Systematic error dependent on
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TABLE Il

n N errmy; confmy; err-ry confry
8 128000 0.338 0.013 1.013 0.113
16 64000 0.166 0.012 0.497 0.113
32 32000 0.089 0.012 0.344 0.114
64 16000 0.051 0.012 0.167 0.116
128 8000 0.024 0.012 0.078 0.114
256 4000 0.015 0.012 0.100 0.114
512 2000 0.010 0.012 0.042 0.116
1024 1000 0.011 0.012 0.063 0.117

error bounds were evaluated and averaged. We considered different reduction strat
reducing the number of particles froom4o n/4,n/2, andn, and from 2 to n. The
corresponding values of the error are displayed in Table Il

The reduction error is displayed in the logarithmic scale in Fig. 6. Here the big poi
correspond to the first column of Table 1lI, while the small points correspond to the tk
column. The other columns would look similar. Figure 6 shows the linear behaviour
the reduction error. The lines corresponding to different columns of Table Ill are roug

parallel. A comparison of the particular values suggests an order of convergence clo
-1/3
n=1/3,

5. CONCLUDING REMARKS

In this paper we presented a detailed study of reduction procedures for the stoch
weighted particle method (SWPM). These procedures are based on appropriate clust
of the particle system in the velocity space. Different methods are provided which pos

Particles Collisions ({(fictitious)
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400 ! 10000
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o] 5 10 15 20 25 30 0 5 10 15 20 25 30
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50 0.0175
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0 5 10 15 20 25 30 0 5 10 15 20 25 30

FIG. 4. One trajectory fon=128.



STOCHASTIC WEIGHTED PARTICLE METHOD 403

2. moment - 1,1 2. moment - 2,2
5.5
2.4
5
2.2
4.5 2
4 1.8
3.5 1.6
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
2. moment - 3,3
5
2.4 4.5
2.2 4
9 3.5
3
1.8 2.5
1.6 2
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
Particles Collisions (fictitious)
40000 80000
35000
30000 60000
25000
20000 40000
15000 |
10000 20000
5000
0 0
0o 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

FIG.5. Short time intervalif = 10240).

conservation properties for all physically relevant macroscopic moments. These re
represent a significant, necessary improvement of the SWPM, which can now be use
calculations for long time intervals.

Theoretical error bounds have been obtained both in the bounded Lipschitz metric
in a particular Sobolev norm. These results were illustrated by detailed nhumerical test
the spatially homogeneous Boltzmann equation. The convergence order with respect
particle numben was found to ba~! for the macroscopic moments. A comparison with th
standard method (complete weight transfer, no reduction) shows that the SWPM not

TABLE Il

n 4n:n/4  4n:n/2  4n:n  2n:n

16 2.234 1.815 1436 1.322

32 1.900 1.527 1.195 1.086

64 1.572 1.274 0.994 0.895
128 1.324 1.063 0.815 0.736
1024 0.725 0.566 0.429 0.387
10240 0.350 0.269 0.202 0.183
102400 0.164 0.126 0.095 0.085
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FIG. 6. Reduction error dependent an

has no additional error but also contains several useful degrees of freedom. Calculatior
long time intervals (far beyond the relaxation time) show the stability of the SWPM.

Our main objective for future research is coupling the spatially inhomogeneous nonlir
Boltzmann equation with the system of Euler equations in regions of local equilibriu
In terms of numerical procedures we will face the problem of combining stochastic «
deterministic algorithms. The robust determination of the coupling boundary, i.e. autorr
domain decomposition, requires reliable computation of several first moments of the de
function. The results obtained by stochastic particle methods are perturbed by stoch
fluctuations, especially in regions of low particle density. Here we expect a signific
improvement of numerical results using the SWPM.
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